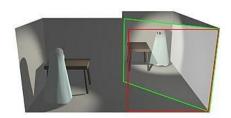
Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale

CAMERA DI PEPPER

John Henry Pepper scienziato inglese (1821- 1900)

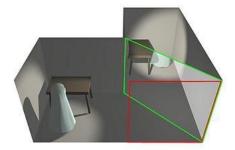
MATERIALE


- a) Legno compensato (2 lati 60x20, 2 lati 40x20, 2 lati 20x20, 1 base 60x20, 1 base 40x20, 2 coperchi 41x21, 1 coperchio 21x21)cm
- b) Viti
- c) Cerniere
- d) Scotch nero
- e) Colla a caldo
- f) Plexiglas (28x19)cm
- g) 2 torce
- h) 2 immagini
- i) Telo nera
- j) Seghetto
- k) Trapano con punta circolare
- 1) Vernice nera

FINALITÁ

Riprodurre illusoriamente le sembianze di un fantasma mediante la sovrapposizione di due immagini, sfruttando un vetro in plexiglas.

DESCRIZIONE


Il Fantasma di Pepper (meglio conosciuto come Pepper's Ghost) è una tecnica illusoria utilizzato in teatro, nelle case degli orrori e in diversi trucchi magici. Sfrutta una lastra di vetro, plexiglas o altri film plastici unita a particolari tecniche di illuminazione, per dare l'illusione che gli oggetti appaiano e scompaiano, diventino trasparenti o si inseriscano all'interno di altri (morphing).

Lo spettatore, guardando nel rettangolo rosso, vede un fantasma che fluttua vicino al tavolo. L'illusione è creata grazie a una grande lastra di vetro, plexiglas o altro film plastico posizionata a un angolo di 45° tra lo spettatore e la scena (riquadro verde). La lastra rifiette una stanza nascosta allo spettatore (a sinistra), a volte chiamata "Stanza Blu", che è costruita in maniera speculare alla scena.

Se la stanza speculare è oscurata, non viene riflessa sul vetro. La stanza vuota (sopra) è invece molto illuminata, rendendola visibile allo spettatore.

Quando le luci che illuminano l'immagine speculare vengono accese (con la stanza vuota leggermente oscurata per compensare), appare il fantasma.

INDICAZIONI OPERATIVE

L'osservatore si posiziona in corrispondenza dei due fori e coprirlo con il telo nero per impedire alla luce di entrare. Accendere la torcia 1 che illumina la rispettiva immagine e spegnerla. Poi accendere la torcia 2. Infine accendere entrambe le torce.

DOMANDE

Livello base

Perché si utilizza il plexiglas?

Livello avanzato

Perché si posiziona il plexiglas a 45 gradi?

RISPOSTE

Il plexiglas è un materiale facilmente lavorabile, oltre a essere più trasparente, seppur non di tanto, del vetro

Livello avanzato

INTERPRETAZIONE

Indice di rifrazione di un materiale:

È una quantità che esprime l'angolo di rifrazione di un'onda che attraversa un dato materiale. l'indice di rifrazione n di un mezzo è il rapporto tra la velocità della luce nel vuoto, c, e la velocità v della luce in quel mezzo (o velocità di propagazione), n = c / v

La velocità di propagazione di un'onda elettromagnetica è indipendente dalla velocità della sorgente, dalla direzione di propagazione, e dalla velocità dell'osservatore. La velocità dipende soltanto dal mezzo in cui si propaga la radiazione

Mezzo: è la sostanza nella quale si propaga l'onda

Quando è accesa una o l'altra torcia:

Non si osserva alcun ologramma

Quando entrambe le torce sono accese:

L'immagine 1 si propaga in linea retta fino agli occhi dell'osservatore, senza subire alcuna deviazione; l'immagine 2, invece, colpendo il plexiglas inclinato di 45° viene riflessa, secondo il fenomeno della riflessione totale: esso avviene con un angolo di inclinazione del materiale riflettente superiore all'angolo limite della rifrazione (42°), e quindi l'immagine viene riflessa e procede parallelamente a terra verso gli occhi. L'osservatore arriva a sovrapporre le due immagini fino a creare l'illusione di un ologramma perché l'occhio prolunga l'immagine riflessa fino a farla sovrapporre alla 1. Ecco perché il plexiglas è posizionato a 45°