LICEO SCHEATHFICO Z

LICEO SCIENTIFICO STATALE "LORENZO MASCHERONI"

Attribuzione - Non commerciale -Condividi allo stesso modo 4.0 Internazionale (CC BY-NC-SA 4.0)

ESPERIMENTI BERGAMOSCIENZA 2021

1) CASCO

Materiali:

- casco da cicli/equitazione/moto
- manichino/bambolotto giocattolo tipo cicciobello
- skateboard
- sensor kinetics

Metodi: senza casco inizialmente far cadere il manichino da una posizione verticale; rilevare l'accelerazione con il sensor kinetics. Ripetere le operazioni ponendo il casco sulla testa del manichino o del bambolotto. [Se disponibile, porre il manichino su uno skateboard, metterlo in moto, aspettare la caduta del manichino; rilevare l'accelerazione con il sensor kinetics. Attraverso i calcoli, ricavare l'energia assorbita dal casco e la forza al momento dell'impatto.]

Dati:

Massa rilevata = 6kg

- Quanti di voi usano il casco quando vanno in bicicletta?
- Secondo voi è obbligatorio l'uso del casco in bici?
- Come il casco protegge dagli urti?
- Secondo voi come è possibile individuare l'energia assorbita dal casco e calcolare
 l'accelerazione del manichino usando solo il nostro cellulare?

Spiegare il funzionamento di PhyPox e il ruolo dell'accelerometro.

Porre il telefono nel marsupio da corsa e legarlo attorno al volto utilizzando lo scotch. Assicurarsi che il telefono non si muova all'interno del marsupio. Far cadere il manichino frontalmente, dopo aver acceso l'accelerometro. Si rilevino i valori delle accelerazioni. Legare il telefono sulla parte posteriore del casco e far cadere il manichino frontalmente.

Si rilevino nuovamente i valori delle accelerazioni. Rimuovere il casco, legare il telefono alla parte posteriore della testa, far cadere il manichino. Rilevare i valori delle accelerazioni.

Se posizioniamo il telefono sul busto del manichino, che accelerazione rileveremo? sarà uguale o diversa a quelle ricavate posizionando il casco sul cranio? L'uso del casco in questo caso è rilevante?

Impatto su cassa Toracica:

<u>Misurazione</u>	<u>Dati</u>
1	41,78 m/s^2
2	65,20 m/s^2
3	45,01 m/s^2
4	59,88 m/s^2
Accelerazione media	52,97 m/s^2

- L'accelerazione cambia se il manichino cade frontalmente o di dorso?
- L'accelerazione sarà maggiore con o senza casco? Con quale casco sarà più alta?

Impatto con casco largo (equitazione) (caduta dorsale) :

<u>Misurazione</u>	<u>Dati</u>
1	93,00 m/s^2
2	88,32 m/s^2
3	100,00 m/s^2
Accelerazione media	93,77 m/s^2

Impatto con casco largo (cicli) (caduta dorsale):

<u>Misurazione</u>	<u>Dati</u>
1	88,00 m/s^2
2	72,00 m/s^2
3	90,00 m/s^2

Accelerazione media	88,33 m/s^2
---------------------	-------------

Impatto con casco largo (equitazione) (caduta frontale):

<u>Misurazione</u>	<u>Dati</u>
1	29,98 m\s^2
2	70,00 m\s^2
3	110,00 m\s^2
Accelerazione media	69,99 m\s^2

Impatto con casco largo (cicli) (caduta frontale):

<u>Misurazione</u>	<u>Dati</u>
1	34,69 m\s^2
2	58,34 m\s^2
3	47,31 m\s^2
Accelerazione media	46,78 m\s^2

- Secondo voi il casco è fermo o traballa quando impatta a terra?
- Cosa succede se mettiamo del pluriball tra casco e testa del manichino?

Impatto con casco. stretto (casco cicli) (pluriball tra casco e testa):

<u>Misurazione</u>	<u>Dati</u>
1	18,51 m\s^2
2	19,00 m\s^2
3	21,67 m\s^2
Accelerazione media	19,73 m\s^2

Impatto con casco stretto (casco equitazione) (pluriball tra casco e testa)

<u>Misurazione</u>	<u>Dati</u>
--------------------	-------------

1	15,00 m\s^2
2	40,00 m\s^2
<u>3</u>	31,00 m\s^2
Accelerazione media	28,67 m\s^2

Impatto senza casco (caduta di faccia):

<u>Misurazione</u>	<u>Dati</u>
1	60,43 m\s^2
2	54,20 m\s^2
3	84,90 m\s^2
Accelerazione media	66,51 m\s^2

Osservando i dati, è quindi utile un casco largo e non ben stretto?

Secondo voi è possibile ricavare la velocità angolare del manichino?
Qualcuno di voi sa cosa è un giroscopio?

Si ricava ora la velocità angolare nei tre casi (casco equitazione, casco bici, senza casco), così da poter ricavare la velocità lineare, e confrontarla quindi con il valore teorico:

1) casco equitazione stretto (caduta di faccia): DA RIFARE A SETTEMBRE

<u>Misurazione</u>	<u>Dati</u>
1	3,78\ 4,69 rad\s
2	
3	
Velocità angolare media	4,24 rad\s

2) Casco bici stretto (caduta di faccia):

<u>Misurazione</u>	<u>Dati</u>
1	14,00 rad\s 4,80 rad\s

2	15,00 rad\s xxxxxxxxxxx
3	14,00 rad\s xxxxxxxxxx
Velocità angolare media	14,33 rad\s

3) Senza casco (caduta di faccia):

<u>Misurazione</u>	<u>Dati</u>
1	(3,73 rad\s-7,15 rad\s) => 5,44 rad\s
2	(3,75 rad\s-12,87 rad\s) => 8,31 rad\s
3	(3,78 rad\s - 16,74 rad\s) => 10,26 rad\s
<u>Velocità angolare media</u>	8,00 rad\s

Caduta (di fronte) dall'alto, con casco da cicli:

Cosa succede se aumentiamo l'altezza da cui cade il manichino?

Posizionare il manichino ad un'altezza superiore e farlo cadere nuovamente. Rilevare i valori dell'accelerazione e confrontarli con quelli ricavati in precedenza.

$$h = 236 cm$$

 $w = 10 rad\s$

Misurazione	Dati
1	30,00 m\s^2
2	55,00 m\s^2
Accelerazione media	42,50 m\s^2

<u>Analisi dei dati</u>: Si ricavi l'energia assorbita dal casco; si confrontino i risultati ottenuti con quelli indicati dalle normative di sicurezza vigenti.

- A cosa possiamo approssimare il manichino che cade?
- Quale è il raggio?
- L'energia si conserva?

Avendo rilevato le velocità angolari, è possibile ricavare le velocità lineari di caduta:

Tipologia casco	<u>Velocità lineare</u>
Ciclismo	7,20 m\s
Equitazione	6,40 m/s
Senza	12,00 m\s

è quindi ora possibile ricavare l'energia cinetica nel momento dell'impatto.

 $K = 1\2 I w^2$

Tipologia casco	Energia cinetica
Ciclismo	<u>51,84 J</u>
Equitazione	40,96 J
Senza	<u>144,00 J</u>

è quindi ora possibile ricavare l'energia assorbita dai due caschi, confrontando i due dati con il valore di energia cinetica senza casco:

-Come è possibile ricavare ora l'energia assorbita dal casco?

<u>Tipologia casco</u>	Energia assorbita
Cicli	<u>92,16 J</u>
Equitazione	103,04

DATI TEORICI

- É possibile confrontare i dati sperimentali con quelli teorici?
- Come si può ricavare il valore teorico della velocità angolare senza casco?

Dato che il manichino non cade verticalmente sul materasso, ma spostato a destra o sinistra, per individuare il dato teorico della velocità angolare di impatto si può applicare la conservazione dell'energia meccanica totale, considerando:

$$U = mgh$$

$$K = \frac{1}{2} I w^2$$

Potendo approssimare il manichino ad un cilindro pieno rispetto all'asse, con I= 1\3mR^2, con R= 150 cm, ovvero la distanza tra il punto del cranio in cui è messo il telefono e la punta del piede.

=> U = K => mgh = 1\2 1\3 mR^2 w^2 => w =
$$\sqrt{(6 g)} \setminus R$$

=> <u>w = 6,30 rad\s</u> => v = w r => v = 1,50 m 6,30 rad\s = <u>9,45 m\s</u> => K = 1\2 | w^2 = <u>89,30 J</u>

Conclusioni: Si stima che le persone che utilizzano bici o, soprattutto, motociclette, si espongano ad un rischio di subire lesioni mortali tra 10 e 20 volte superiore rispetto agli automobilisti. Due fra le tipologie di incidenti più comuni sono l'urto frontale con un altro mezzo e la collisione fianco a fianco in traiettoria curvilinea.

Nel primo caso, si hanno due possibili reazioni all'urto: la prima è che l'urto non sia abbastanza potente da sbalzare la persona dalla bici\motocicletta perchè il movimento in avanti viene arrestato dall'urto con l'altro mezzo. La seconda possibilità è che la forza delle braccia sul manubrio e del corpo sul mezzo contribuiscano ad alzare la traiettoria, sbalzando di fatto la persona al di fuori della bici\moto, facendola ricadere sul tetto dell'auto e poi al suolo. Ad oggi, negli incidenti stradali che coinvolgono bici e moto, il 66,7% delle ferite riportate riguardano il cranio, ed il 27,0% delle morti a seguito di incidenti stradali con coinvolgimento di bici e moto sono correlate a ferite alla testa. (Vedi fig. 1)

Injured body regions

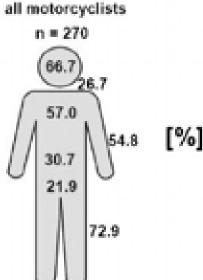


fig. 1: Dati relativi alle parti del corpo maggiormente sogg ette a lesioni a seguito di incidenti stradali (motociclistici)

Un'indagine del 2008 ha mostrato che il 42,0% dei motociclisti deceduti non indossava il

casco e che la maggior parte di loro, se avesse indossato il casco, sarebbe sopravvissuta. Altri dati, confermati sperimentalmente anche dal nostro esperimento, hanno dimostrato che l'accelerazione lineare trasmessa alla testa a seguito dell'impatto è sempre maggiore nei soggetti sprovvisti di casco.

A seconda dei materiali utilizzati nella progettazione e costruzione del casco, esso avrà un grado più o meno elevato di assorbimento dell'accelerazione nel momento di un urto o di una caduta.

Tuttavia i caschi, anche quelli più avanzati, hanno un'accelerazione massima di tenuta ed essa risulta essere pari a 275 volte l'accelerazione di gravità g, ossia circa 2697 m/s². Anche in presenza del casco, tuttavia, per urti molto forti non è possibile prevenire totalmente possibili infortuni alla testa: è stato stimato che per forze con un grado di accelerazione tra 116 g e 162 g, il rischio di lesioni sia stimato al 50%.

Si procede quindi ad analizzare le tipologie di ferite che potrebbero essere riportate in relazione alle tre velocità di urto ricavate:

Sede lesioni Velocità	i impatto	Totale
<50 km/h	>50 km/h	
89	10	99
22,6%	18,5%	22,1%
106	18	124
26,9%	33,3%	27,7%
82	11	93
20,8%	20,4%	20,8%
117	15	132
29,7%	27,8%	29,5%
394	54	448
100%	100%	100%
	<50 km/h 89 22,6% 106 26,9% 82 20,8% 117 29,7% 394	89 10 22,6% 18,5% 106 18 26,9% 33,3% 82 11 20,8% 20,4% 117 15 29,7% 27,8% 394 54

Tipologia lesioni <50	Velocità di	Velocità di impatto	
	<50 km/h	>50 km/h	Totale
Contusioni-	287	30	317
Escoriazioni	72,8%	55,6%	70,8%
Seethern Seedensie	100	20	120
Fratture-Emorragie	25,4%	37,0%	26,8%
Emercesia interna	7	4	11
Emorragie interne	1,8%	7,4%	2,5%
Totale	394	54	448
Totale	100%	100%	100%

Si osserva quindi che, essendo le tre velocità tutte > 50 km\h, la persona avrebbe una probabilità attorno al 18,5 % di sviluppare lesioni al cranio.

Possiamo infine concludere che il casco è in grado di ridurre fortemente il rischio di lesioni gravi cerebrali, ma non è in grado di azzerare questo rischio.